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A condition is obtained for orthogonal polynomials on the unit circle to be
almost everywhere strongly (C, I )-summable. © 1992 Academic Press, Inc.

1. INTRODUCTION AND THE MAIN RESULT

Given a finite positive Borel measure J.1. on the interval [ -n, n) with an
infinite set as its support, one defines the polynomials rP,,(O = rP,,(J.1., 0 =
K,,(" + ... orthonormal on the unit circle with respect to J.1. by requiring
that K" = K,,(J.1.) > 0 and the relations

(1)

hold for all m, n;:. 0, where 15 m " = 1 if m = n, and 15 m" = 0 otherwise, and the
bar indicates complex conjugation. The aim of these notes is to prove the
following:

THEOREM 1. Let J.1. be a finite positive Borel measure on the interval
[-n,n) with infinite support, and let rP,,=rP,,(J.1.) be the corresponding
orthonormal polynomials on the unit circle. Assume

(2)
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as n-+ 00. Assume, further, that f belongs to the closed subspace of L;
spanned by polynomials of eiO

• Then the orthogonal expansion of f(O) with
respect to the polynomials r/J,,(e iO

) is almost everywhere strongZv (C, 1)
summable to f(O). That is, if

x

f(O) "- L cj!/Jj(e'o)
j~O

is the orthogonal expansion off and s,.(O) are the partial sums of this series,
then

1 ,,-I

lim - L IS,,(I) -f(l)1 = 0
n- x' n v =0

holds for almost every t E [ - n, n).

(3 )

Almost every and almost everywhere here and below are meant with
respect to the Lebesgue measure, unless otherwise mentioned. In [2, Satz I,
p.84] (restated as [3, Theorem IV.3.1, p. 148]), G. Freud, improving a
similar result of K. Tandori [9, Siitze 1 and 2, p. 74], obtained a remarkable
result connecting the behavior of the Christoffel function with the strong
summability of orthogonal polynomial expansions. His result concerns
polynomials orthogonal on an interval of the real line. G. Alexits [1,
Theorem 3.4.1, p.206] extends this result to polynomial-like orthogonal
systems (see [1, Sect. 3.1, p. 177]), but polynomial-like systems only
generalize real orthogonal polynomials (and some other systems, such as
the trigonometric system), not orthogonal polynomials on the unit circle.
An important question left open by Freud's result was under what
circumstances the assumptions in his theorem are satisfied. An advance in
this direction was made in [6, Theorem 2, p. 147], where it was shown that
Freud's condition was fulfilled almost everywhere for polynomials in the
Szego class (more precise results are given in [7, Theorems 1, 5, 7, and 8]).

Orthogonal polynomials on the unit circle are often better behaved than
the corresponding orthogonal polynomials on the interval [-1, I]; the
above result seems to be an exception. Namely, the quoted result in [2]
combined with the result mentioned in [6] establishes almost everywhere
strong (C, 1)-summability of L 2 orthogonal polynomial expansions
provided these polynomials belong to the Szego class of the interval
[-1, 1], whereas condition (2) requires much more than that the
polynomials belong to the Szego class of the unit circle. Condition (2) is
connected with the behavior of the integral modulus of continuity of the
Szego function of p; see [4, especially Formula (2.8) on p. 21 and Formulas
(3.8) and (3.9) on p. 32; 5, Formula (XII.5), p. 95] (the latter refers to a
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paper of Freud; we were unable to see how the formula in question is
substantiated by Freud's quoted paper).

In the proof of this theorem we establish (3) for every value of
tE (-n, n) for which

and

f
t+h

F r(lI) = II(8) - IUW d,u(e) = 0(1111)
t

(11--+0) (4)

(5)

hold. By virtue of the assumption IE L ~t' condition (4) holds for almost
every tE (-n, n). Namely, if we write ,11' for a fixed Radon-Nikodym
derivative of (the absolutely continuous part of) ,11, and if we denote by E"
the set of t's where

1 ft+h
lim -h II(8) - I\f d,u(8) i= II(t) - I\f ,11'(8),
h~O r

and by E the set of t's where

1 ,r+ h

lim -II J d,u(8) i= ,11'(8),
h~O r

then (4) holds for every t E ( - n, 7t) not belonging to E and to any of the
sets E"., IV a complex rational. This argument is carried out for the case
d,u( t) = dt in more detail in [10, Vol. I, Theorem 11.11.3, p. 65] on account
of a discussion of Lebesgue points.

As for condition (5), this holds for almost every t E ( - n, n) provided ,11
is in the Szego class; that is, when

r log ,11'(8) de> - 00,
-n

(6)

according to [6, Theorem 1 and formula (5), p. 147] (a more precise result
is found in [7, Theorems 1 and 7, pp. 435 and 449]). It is interesting to
note that (6) is exactly the condition for the set of polynomials of ei8 not
to be complete in L~ (cf. [3, Theorem V.2.3, p. 200, and Theorem V.2.5,
p. 204]). Formula (6) is a consequence of (2); in fact, (6) is equivalent to
the condition

or

I. ItP,.(OW < w;
\'=0
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see, e.g., [3, Formulas (V.2.6) and (V.2.7), p. 200, and Theorem V.2.5,
p. 204] or [8, Formula (11.3.6) and Theorem 11.3.3, pp. 290-291].

While we will not use this fact below, condition (2) implies that even
more than (5) is true; namely, it implies that

lim e-int¢J,,(e it )
n _ 'X

exists and is finite (7)

for almost every t E [ - n, n) with respect to the measure /1, hence, a fortiori
(since /1' > 0 almost everywhere in view of (6)), for almost every
t E [ - n, n) with respect to the Lebesgue measure. This was pointed out to
me by Paul Nevai, and his reasoning is as follows. It can easily be shown
using summation by parts that (2) implies that

x

L I¢J,,(OW log2 v<:xJ;
\'= I

hence

oc

L ¢JAO) ¢Jv(e it )
v=o

converges for almost every t with respect to /1 by the Mensov-Rademacher
theorem (see, e.g., [ 10, Vol. II, Theorem XIII.l 0.21, p. 193] or [I,
Theorem 2.3.2, p. 80]). I As for the partial sums of this series, we have

"L ¢J,.(O) ¢J..(z) = K,,¢J~(Z),
\'=0

where

(8)

see, e.g., [3, Theorem V.1.8, p. 195] or [8, Theorem 11.3.2, p. 290]. In view
of the same theorems in [3] or [8], we have

"
K~ = L I¢J;(OW,

I~O

(9)

I Alexits [I] describes the Mensov-Rademacher Theorem for real-valued orthogonal
systems, but the proof he gives works for complex-valued systems equally well; most other
sources also deal only with real-valued systems. Zygmund [10] considers complex-valued
orthogonal systems, but only with respect to the Lebesgue measure; this is not a genuine
limitation, however, since the case of an arbitrary finite positive Borel measure can be
obtained via a change of variables.
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and so /(" tends to a finite positive limit as n --+ 00, according to (2). Hence
¢i:(ei' ) converges to a finite limit for almost every ( with respect to /1. Thus
(7) holds in view of (8). In particular, we have

sup 1¢i,,(ei')1 < ,Yj

"

for almost every (E [ - n, n).

2. PROOF OF THE MAIN RESULTS

( 10)

Throughout this section we write' = eilJ and z = eit
. 8 will usually vary,

and (E ( - n, n) will be a fixed quantity for which (4) and (5) are satisfied.
We write f!jJ for the closure in L~ of the set of polynomials of e ilJ

. After the
proof of Theorem 1, we make some comparisons with Freud's proof of
[2, Satz I, p. 84]. The following estimate is crucial in the proof:

LEMMA 2. AssumefEL~and(4)issa(isfied.Le(r,,=1+1In. Then

r If(8)-f(tW I~ 1

2

dJ1(8)=o(n)
-1r I, r,,-

as n --+ 00.

(11 )

Proof For the sake of simplicity we assume (= 0 in the proof. We
break up the interval of integration into the parts S l = [ -lin, lin] and
S2= [-n, n)\Sj. The integral on Sl is less than

n2 f If(8) - f(OW J1(8),
51

and this is o(n) in view of (4) with (=0. As for the integral on S2, writing
F = Fo for the function defined in (4), we obtain by integrating by parts
that

4 I 1 I'2 f If(8) - f(OW -ilJ- - dJ1(8)
n 52 e - r"

~t If(8) - f(OW ~2 dJ1(8)

=F(~) _F(~) n2 + F(-=2) n2 _ F( -n) +f F(8) d8.
n" n n 7[2 52 83

The right-hand side here is o(n) according to (4) with (= O. I
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Before we turn to the proof of Theorem 1, we state a useful consequence
of the orthogonality relations (I): for all integers m and n with °~ m ~ n
we have

(12)

This follows from (1) simply by representing (m as a linear combination of
tPk(O for k~m.

Proof of Theorem I. We have

"der '\' A.E" = S,,(t) - f(t) = - f(t) + L. C;'f'j(Z)
;=0

1 f"= 2n _" (f((})-f(t))K,,+,((,z)dp((}),

where cj are the expansion coefficients of f, and

(13)

here the second equality is Szego's modified Christoffel-Darboux formula
(see [8, Formula (11.4.5), p. 293] or [3, Lemma V.l.lO, p. 196]), and the
starred polynomials are defined by (8) above.

In estimating E y , we move the singularity on the right-hand side of (14)
outside the unit circle,

(15)

where, writing r = 1+ l/n for a given n,

(16)

and

(17 )
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E 1v can easily be estimated by Schwarz's inequality,

IE1>1 ::::;(-212 r
n

If(8)- f(t) 12 1 v ::: ._1
2

d/1(8)\) 1

2

7[n • -- n ~ - / _

x U:n IK,+ 1((' tW d/1(8)) 12

= o(n -12) Cta IcPJ (tWY2 = 0(1) (18)

as n --+ oo. Here the first equality holds by Lemma 2, and the second one,
by (5); furthermore, the second integral after ::::; symbol was evaluated by
using the orthogonality properties (1) of cPj'

In estimating E 2", note that by the second equality in (14) we have

( 19)

where

(20)

and

(21 )

We estimate sums involving A" and B v • The latter is easier. Namely, by
Bessel's inequality,

as n --+ 00; the equality here holds according to Lemma 2 (recall that r was
chosen the same as the r" of this lemma; the Bv's depend on n, even though
this dependence is not indicated explicitly). Using Schwarz's inequality, (5)
now gives

:t0 IcP v+ 1(z )I IB" I ::::; Ct0 IcP , + 1(::: ) 1
2

) 1.2 Ct0 IB v 12y2

= O(n l 2) 0(n I2
) = o(n). (23)

The estimation of the analogous sum involving the A;s is more
complicated, since the polynomials cP~ are not orthogonal. Since f(8)-
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f(l}E& by assumption (& was defined at the beginning of this section),
and 1/«( - rz) is a uniformly convergent limit of polynomials of" we also
have

1
(/(8)- f(t))-y-EfJJi.

I" -rz

With the orthogonal expansion

we have

It now follows from the equation

r t/Jt(O (p(O dll(8) = 0,
-- n

(24)

(25)

true for every polynomial p of degree < k (this relation is a simple
consequence of (8) and the complex conjugate of (12); see, e.g.,
[3, Lemma V.1.9, p. 196]), that the integrals on the right-hand side are
zero unless j> v. For j > v the integrals can be evaluated as follows:

To get the first equality we used the fact that the that only the constant
term of t/J:+ 1 gives a nonzero contribution to the integral in view of the
complex conjugate of (12). For the second equality, we used the equation
t/J:+ 1(0) = Kv+ ,( = Kv + d and the recurrence relation

Kj(t/Jj(O = Kj + ,t/Jj+ ,(0 -t/Jj+ 1(0) t/Jt+ ,(0;

for the latter, see, e.g., [8, Formula (11.4.6), p. 293]. The first integral on
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the right-hand side of the above expression is °in view of the orthogonality
relations (1); in evaluating the second integral, we use (8), the fact that
1/[= ( as lsi = 1, and (2). Thus the right-hand side equals

Hence

Here K. + d(KjK
J

+ d is bounded independently of v and J in view of (2) and
(9). Hence, for some positive constants C and C', we have 2

n - 1 n - 1 ::r~,

\,=0 \,=0 t=l'+l

=CL liP)+I(OJlla,1
J~ I

mm( 1-- L n - 1)

L liP.· + 1(::)1
\'=0

:::;C'LJliPj+l(O)lla;I+C'n I. liP,+dO)lla;l;
i~ 1 ,~n+ I

(26)

the second inequality here follows by Schwarz's inequality, and the third
one holds in view of (5).

The second sum on the right-hand side is easy to estimate by Schwarz's
inequality:

J~t I liPj +1(0)1 lail :::; C~t L liPJ +1(0)1
2Y2 (,~t I laj l

2
y2

=00/;;;)0(;;;)=0(1). (27)

The first equality here follows by (2) and the relation

x

L l aj l
2 = o(n).

j= 1

The latter is a consequence of Bessel's inequality and Lemma 2.

(28)

2 This is practically the only point in the proof where there would be a slight simplification
if we were to use (10) instead of (5). The gain in the following calculation would be minor.
The loss, owing to the fact that (5) might hold at more points than (10), would also be minor.
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In order to estimate the first sum on the right-hand side of (26), write

z

/1;= I liftdOW.
k ~ 1'- I

We can estimate the sum in question by using Schwarz's inequality and
then summation by parts:

11 fl

I j fiftH I(O)lla;1 = I j )I/j-I/j+ 1 la;1
;+ I /+ I

The second inequality here follows by (2) and (28). Putting this and (27)
together with (26), we obtain

TI

I lift~+I(z)IIA,.1 =o(n).
\,=0

Using this and (23), by (19) we obtain

tl

I 1£2,·1 =o(n).
l'=O

(29)

Now (3) follows from this relation and (18) (cf. (13)). The proof of the
theorem is complete. I

Comparisons with Freud's Proof Freud obtained a stronger result in
[2, Satz I, p. 84J for orthogonal polynomials on the interval [-1, 1J than
our Theorem 1 for the unit circle. His proof, which followed closely that of
Tandori [9J, avoided some technical complications in view of the different
form of the Christoffel-Darboux formula for the real line. In his proof, he
estimated the integral analogous to the right-hand side of our formula (13)
by cutting the interval of integration into two parts as we did it in the
proof of Lemma 2; the proof of this lemma follows Freud's reasoning in
[3, p. 86]. The crucial difference here is that formula (20) involves the
polynomials ift~+ 1, which are not orthogonal, so the estimation of sums
involving the A,.'s is more difficult and less precise. An important relation
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for this estimation is (24), which is needed for the validity of (25). This is
why, instead of cutting the interval of integration in (13), we moved the
singularity, as was done in (16) and (17). Interesting observations on the
background of Freud's and Tandori's proofs can be found in [1, Sect. 3.4,
p.212].
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